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Two analytical representations for the potential energy surface of the F2 dimer were constructed on the basis
of ab initio calculations up to the fourth-order of Møller-Plesset (MP) perturbation theory. The best estimate
of the complete basis set limit of interaction energy was derived for analysis of basis set incompleteness
errors. At the MP4/aug-cc-pVTZ level of theory, the most stable structure of the dimer was obtained atR )
6.82 au,θa ) 12.9°, θb ) 76.0°, andæ ) 180°, with a well depth of 716µEh. Two other minima were found
for canted and X-shaped configurations with potential energies around-596 and-629 µEh, respectively.
Hexadecapole moments of monomers play an important role in the anisotropy of interaction energy that is
highly R-dependent at intermediate intermolecular distances. The quality of potentials was tested by computing
values of the second virial coefficient. The fitted MP4 potential has a more reasonable agreement with
experimental values.

1. Introduction

In recent years, high-level quantum mechanical computations
have been used to construct numerous accurate potential energy
surfaces (PES) for most of the small- and medium-sized
molecular species and have been applied successfully in a wide
range of applications. However, there have been few high-level
studies on the F2 contained van der Waals complexes.1-4

Moreover, molecular fluorine is a highly reactive material, and
because of its corrosive nature, there are limited experimental
measurements for its molecular5-7 and bulk8 properties. For such
a challenging system, the existence of an accurate intermolecular
pair potential will be helpful in future experimental and
theoretical studies. To our knowledge, the only ab initio
investigation of the F2 dimer is the work of Noorbala and
Sabzyan9 that was based on the MP2/6-31G* calculations, for
which, at every point on the PES, the monomer bond lengths
were left relaxed to be optimized. However, their adopted grid
(which included 20 724 points on the PES) did not cover all
possible relative orientations of monomers because one of the
four intermolecular degrees of freedom was frozen to a fixed
value (θb ) 90°). In any case, their results predicted that the F2

dimer is thermodynamically stable, and after averaging over
dihedral angle between molecules, they obtained an effective
PES with a global and a local minimum in parallel and T-shaped
orientations, respectively.

Electron correlation contributions to intermolecular interac-
tions have a central role in the structure and the energetics of
van der Waals complexes.10 Electron correlation can commonly
be described adequately when one applies a high-level post-
Hartree-Fock (HF) method in conjunction with an extended
basis set consisting of different types of polarization functions.
This is a more difficult task in the case of intermolecular
correlation effects because the standard basis sets are mostly
optimized for intramolecular properties, and so their application
to intermolecular problems usually results in a slow convergence
to the complete basis set (CBS) limit. To overcome these

problems, an alternative approach is the use of bond functions
located somewhere between monomers. This approach has been
widely employed after the works of Tao et al.11,12 However,
the application of bond functions causes new difficulties. The
major issues are the artificial deformation of charge distributions
on the monomers and the production of higher-order basis set
superposition errors (BSSE) that are uncorrectable via the usual
counterpoise procedure.13-15 To avoid these deficiencies, Tao
and Pan11 proposed two criteria to be satisfied by atom centered
basis functions before the addition of bond functions.

Before any comprehensive exploration of the PES, it is
necessary to investigate the efficiency of different computational
levels to gain a reasonable compromise between precision and
computational cost. In the present work, along with a high-
level ab initio investigation of the F2 dimer, analytical four-
dimensional representations were obtained for the calculated
PES at different levels and were tested against experimental
second virial coefficients. Recently, we constructed a new PES
for the N2 dimer16 utilized to calculate thermophysical properties
of nitrogen.17 Both fluorine and nitrogen molecules are closed
shell, linear, and homonuclear, and one might expect that they
have similar intermolecular interactions. In our present work,
various aspects of the PESs of these systems were compared,
and we endeavored to relate the differences between these
complexes to their monomer properties.

2. Approach and Methodology

2.1. Grid Points and Computational Levels.The interaction
in the F2-F2 dimer is described in the body-fixed Jacobi
coordinates system,18 in which the center of mass of molecule
a is located at the origin, and the position of the center of mass
of molecule b is denoted by pointing vectorR with modulusR
and with anglesθa, θb, andæ ) æa - æb. The (R, θa, θb, æ)
notation will be applied to identify different points, curves, or
slices of the PES, whereR is given in atomic units (au). Before
complete exploration of the PES, the efficiency of different
computational levels was investigated by some test calculations
along the (7.5, 0,θb, 0) slice of the PES for whichθb varied in
steps of 15°. Note that this slice (θ-slice) is equivalent to the
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(7.5,θa, 0, 0) slice because, in the adopted Jacobi coordinates,
the PES is symmetric with respect to theθa ) θb surface.

After a detailed analysis of the results of different methods
and basis sets along theθ-slice was performed, the most efficient
computational level was adopted to calculate the PES. All ab
initio calculations were performed for 19 unequal distances of
R between 4 and 20 au over two different angular grids. The
first grid was obtained by varying all angles in steps of 30°
and included 37 symmetry unique orientations. Note that the
symmetry of the dimer reduces the range of angles to 0e θa e
θb e 90 and 0e æ e 180. Because this grid did not provide a
reliable accuracy in the fitting procedure, a second series of
calculations was performed over an angular grid withθa, θb )
15, 30, and 75° andæ ) 15, 30, and 165°. In all calculations,
the monomer bond length was kept fixed in its vibrationally
averaged experimental value of 2.668 au.5

The Møller-Plesset (MP) perturbation theory19 up to the
fourth-order was applied to compute the interaction energy in
a supermolecular fashion. According to the counterpoise
procedure (cp),20 the cp-corrected interaction energy at each
point (R, θa, θb, æ) is defined in eq 1:

whereEab,{axb}
(n) andEa,{axb}

(n) (or Eb,{axb}
(n) ) are dimer and monomer

energies, respectively. All of them were obtained at the MPn
level of theory utilizing the basis set{axb} of the total complex
that includes both the atom centered{a} and {b} sets of
monomers and the non-atom centered set{x} of bond functions.
The calculations reported in this work employ the correlation
consistent cc-pVXZ, and their augmented version aug-cc-pVXZ,
sets of Dunning and co-workers,21,22 (XZ and aXZ (X) D, T,
Q, 5, and 6), respectively). Because of computational limitations,
all h and i functions were eliminated from 5Z, a5Z, 6Z, and
a6Z sets, and the resulting subsets will be denoted as 5Z1, a5Z1,
6Z2, and a6Z2, respectively. The 3s3p2d1f set of bond functions
(+b) recommended by Tao and Pan11 was utilized in conjunction
with aXZ atom centered basis sets. All bond functions were
located at the middle of intermolecular pointing vectorR. The
ab initio calculations reported in this paper were carried out
using the PC GAMESS suite of programs.23,24

2.2. Global Representation of the PES.To obtain an analytic
representation of the F2-F2 potential, the interaction energies
calculated at each value ofR were fitted to the spherical
expansion shown in eq 2:25,26

whereLa, Lb ) 0,1,2,... and|La - Lb| e L e La + Lb. The
symmetry of the F2 dimer leads to the relationVLa,Lb,L ) VLb,La,L

between expansion coefficients, and only even moments appear
in eq 2. Angular basis functions (ALa,Lb,L) are shown in eq 3:

wherePL
M(cos θ) stands for the associated Legendre polyno-

mials, and〈La,M;Lb,-M|L,0〉 is the Clebsch-Gordan coefficient.

The expansion coefficientsVLa,Lb,L(R) were evaluated using a
weighted linear least-squares procedure. The most important
concern in the adopted fitting procedure was to obtain an
accurate representation of the PES in its bond region (U < 0).
Consequently, at each value ofR all ab initio energies{Ui}
were weighted using a nonuniform weight function of the form
(1 - (Ui - Umin)2)-1. In this step, a reliable accuracy was
obtained using a set of 24VLa,Lb,L coefficients that covers all 18
terms up toLa ) 6 andLb ) 2 and another six terms withLa +
Lb ) L up to La ) 8 andLb ) 6.

The full potential was obtained by fitting the resultedVLa,Lb,L

coefficients over the grid ofRpoints. Following Vissers et al.,27

the long-range part ofVLa,Lb,L was fitted by a two-parameter
single-term functional of the form shown in eq 4.

These long-range terms were damped by a Tang-Toennies28

damping function, shown in eq 5.

The resulting terms were subtracted fromVLa,Lb,L to obtain the
short-range contributions as shown in eq 6:

wherenLa,Lb,L was taken to be the integer closest toνLa,Lb,L. The
resulting short-range contributions were then fitted to the form
shown in eq 7:

wherekmax is a proper integer between 2 and 6. The parameters
RLa,Lb,L, which appeared both in the damping function and in
the short-range functional form, were obtained by an iterative
procedure started with an initial guess forRLa,Lb,L in eq 6. It
must be noted that certain{La, Lb, L} combinations do not
contribute to the long-range part ofVLa,Lb,L. In these cases, the
long-range fit of eq 4 was not possible; consequently, the
correspondingcLa,Lb,L parameters were set equal to zero.

In an alternative approach for global representation of the
PES and after the least-squares fitting of eq 2 was performed,
radial fitting of theVLa,Lb,L terms was replaced by a piecewise
polynomial interpolation of their values along theR grid. This
fitting-interpolating surface, which is accurate to within the order
of errors introduced in the angular fitting step, was applied to
trace the behavior of the above-mentioned full-fitting surface
and to remove its unexpected errors by refinement of radial
parameters.

3. Results and Discussions

3.1. Monomer Properties. Before proceeding with the
calculation of interaction energies, we investigated some
monomer properties that are relevant to intermolecular forces.
Quadrupole (Θ) and hexadecapole (Φ) moments and static
polarizability (R) of the F2 molecule were calculated with both
XZ and aXZ basis sets at HF and MP2 levels of theory. The
corresponding results are collected in Table 1, in which the mean

U{axb}
(n) ) Eab,{axb}

(n) - Ea,{axb}
(n) - Eb,{axb}

(n) (1)

U(R, θa, θb, æ) ) ∑
La,Lb,L

VLa,Lb,L
(R)ALa,Lb,L

(θa, θb, æ) (2)

ALa,Lb,L
(θa, θb, æ) ) ∑

M)0

min(La,Lb)

(-1)M(2 - δM,0)〈La,M;Lb,-

M|L,0〉 × [(La - M)!(Lb - M)!

(La + M)!(Lb + M)!]1/2

×

PLa

M(cosθa)PLb

M (cosθb) cos(Mæ) (3)

VLa,Lb,L
LR (R) )

cLa,Lb,L

RνLa,Lb,L
(4)

F(R;n,R) ) 1 - exp(-RR) ∑
k)0

n (RR)k

k!
(5)

VLa,Lb,L
SR (R) ) VLa,Lb,L

(R) - F(R;nLa,Lb,L
,RLa,Lb,L

)
cLa,Lb,L

RνLa,Lb,L
(6)

VLa,Lb,L
SR (R) ) exp(-RLa,Lb,L

R) ∑
k)0

kmax

dLa,Lb,L
Rk (7)
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polarizability (Rj) and its anisotropy (∆R) are defined as (Rxx +
Ryy + Rzz)/3 andRzz - (Rxx + Ryy)/2, respectively.18 Different
components of the polarizability tensor were obtained by the
finite field method.29,30

In agreement with the well-known crucial role of diffuse
functions for accurate description of intermolecular interactions,
their presence is important for rapid convergence of multipole
moments and polarizabilities to the CBS limit. In comparison
with the N2 molecule,16 an important feature of the F2 molecule
is its larger hexadecapole and smaller quadrupole moments. This
fact has important consequences for anisotropic aspects of the
PES that will be discussed later.

As can be seen in Table 1, most of the calculated multipole
moments with the aXZ and the XZ basis sets converge to the
CBS limit from opposite sides. Therefore, the CBS limit is
bounded between aXZ and XZ values, and the simple arithmetic
mean of a5Z1 and 5Z1 values can be used to estimate the CBS
limit of quadrupole and hexadecapole moments. Accordingly,
we have obtained 0.49 and 11.75 au for the CBS limits of HF
quadrupole and hexadecapole moments and 0.75 and 13.63 au
for the CBS limits of MP2 quadrupole and hexadecapole
moments, respectively. Polarizability cannot be estimated in a
similar manner because both XZ and aXZ values converge to
the CBS limit from the same side. However, the small difference
between the aQZ and the a5Z1 values (which is less than 0.5%)
shows that a5Z1 polarizabilities are nearly converged to the CBS
limit. It is also observed that the correlation contribution to
multipole moments and to the polarizabilities of monomers is
nearly the same for different aXZ basis sets and seems to be
converging more rapidly than the HF contribution.

3.2. Benchmark Calculations along the θ-Slice. The
estimated CBS limit of MP2 and MP4 interaction energies and
those obtained with aTZ and aTZ+b basis sets along theθ-slice
are shown in Figure 1. For the most stable point of this slice,
the corresponding numerical values and those of other basis
sets are summarized in Table 2. Different strategies were
employed to estimate the CBS limit of HF and the correlation
components of interaction energy, because they have different
convergence behaviors. Moreover, considering the computa-
tional cost of these methods, it is possible to obtain HF values
with more extended basis sets than with those applied in
calculation of correlation corrections.

As can be seen in Table 2 by the comparison of a5Z1 with
a6Z2, the values of the HF interaction energy demonstrate that
the a6Z2 values are nearly converged. Moreover, the cp-
corrected and uncorrected values of interaction energy and its
components converge to the CBS limit from opposite sides, and
the magnitude of BSSE for the HF/a6Z2 energy is, on average,
less than 2µEh along theθ-slice. According to these facts, a
simple average of the cp-corrected and uncorrected values is
expected to be within 1µEh of the CBS limit. This simple

average was adopted as our best estimate of the HF limit of
interaction energy. In the case of correlation components of
interaction energy, the values obtained with a5Z1+b were
chosen as our best estimates of the CBS limit. Comparison of
aQZ+b with a5Z1+b values in Table 2 demonstrates that the
correlation corrections of interaction energy is nearly converged
with respect to{spdfg} basis functions, and the remaining errors
due to higher polarization functions are minor (as expected),
because the bond functions recover their contributions.

A well-known feature of MP perturbation theory is its
problematic convergence, in some systems, due to exaggeration
of correlations at some levels of MP. This behavior is expected
to occur at situations with a high degree of electron clustering.31

In the F2-F2 system, the convergence pattern of the MP series
for total energy of the complex is similar to that of monomers.
In both cases, there are oscillations in whichEHF > E(3) > E(2)

> E(4). This trend seems to be independent of the selected basis
set and the geometry of the complex. In the case of interaction
energies, the noticeable fact that could be found in Figure 1 is
the angular dependence of the MP convergence pattern. In most
configurations, MP interaction energies have the same oscillatory
behavior as those of total energies, but in configurations near
to (R, 0, 0, 0),U(2) becomes more stable thanU(4).

3.3. Role of Electrostatic Interactions on the Shape of the
PES. As is expected from the physical nature of interaction in
this system,18 the (R, 0, 0, 0) orientation is the most repulsive
one along theθ-slice, because the short-range exchange and
the overlap repulsions are maximized for the linear structure of
the complex. Furthermore, the electrostatic components of
interaction have their maximum repulsive values at this orienta-
tion. The main difference between this complex and other similar
systems, such as the N2 dimer, corresponds to the location of
the most attractive orientation in Figure 1. This characteristic
structural feature is controlled by the relative importance and
anisotropic behavior of dispersion and electrostatic attractions
and by the anisotropic nature of decay rate of short-range
repulsions.

To examine anisotropy and the importance of multipole-
multipole interactions, the electrostatic components of interaction

TABLE 1: Quadrupole ( Θ), Hexadecapole (Φ), Mean (rj)
and Anisotropic (∆r) Polarizability of the F2 Molecule
Obtained with Different Basis Sets at HF and MP2 Levels of
Theorya

Θ Φ Rj ∆R

basis set HF MP2 HF MP2 HF MP2 HF MP2

TZ 0.541 0.737 11.52 13.05 6.267 5.053 10.274 6.527
QZ 0.520 0.750 11.57 13.27 7.167 6.115 9.857 6.091
5Z1 0.500 0.749 11.63 13.54 7.716 6.844 9.639 5.848
aTZ 0.534 0.784 12.10 14.03 8.418 7.869 9.088 5.108
aQZ 0.511 0.770 12.03 13.89 8.563 8.095 9.053 5.011
a5Z1 0.495 0.756 11.86 13.73 8.577 8.140 9.072 5.022

a All values are in atomic units (au).

Figure 1. Comparison of MP2 and MP4 interaction energies obtained
with aTZ and aTZ+b basis sets with the estimated CBS values along
the (7.5, 0,θb, 0) slice of the PES.
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energy along theθ-slice are shown in Figure 2. These contribu-
tions are defined via a multipole expansion of the form shown
in eq 8:

where MLa and MLb are permanent multipole moments of
molecules a and b, which have nonzero values only forLa, Lb

g 2 (M2 ≡ Θ, M4 ≡ Φ, ...). The functionsBLa,Lb,L, which are
responsible for the angular dependence of interaction, are related
to ALa,Lb,L in eq 2 with the same indices. The first three terms,
which appeared in eq 8, are quadrupole-quadrupole (QQ),
quadrupole-hexadecapole (QH) and hexadecapole-hexadeca-
pole (HH) interactions. As can be seen in Figure 2, the minimum
of the leading QQ term along theθ-slice corresponds to (R, 0,
90, 0) (the T-shaped orientation), but those of the QH and the
HH contributions occur atθb ) 59.5° and 49°, respectively.
For the total electrostatic interaction, the shape of the curve
and the location of its minimum depend on the relative
magnitude of quadrupole and hexadecapole moments of di-
atomic monomers. In comparison with the N2 dimer,16 the
minimum of the total electrostatic interaction of the F2 dimer
is shifted to smallerθb angles as a result of overall larger
hexadecapole and smaller quadrupole moments.

Comparison between Figures 1 and 2 suggests that the
anisotropy of total interaction energy at correlated levels of

theory is controlled by the anisotropy of electrostatic component
of interaction, and the latter is dominantly affected by the terms
containing the hexadecapole moment in the multipole expansion.
It is important to note that the order of magnitude of the overlap
repulsions and of the dispersion attractions is usually larger than
that of the electrostatic interactions,10 but at an intermediate
range they compensate for each other at correlated levels of
theory, and the shape of the PES becomes more sensitive to
the anisotropy of electrostatic components. At the HF level of
theory, the dispersion contributions are absent, and the overall
shape of the PES, which monotonically decreases along the
θ-slice, is determined by strong overlap repulsions and the
anisotropy of electrostatic components is effaced. At other
intermolecular distances, the location of the minimum in
Figure 1 will shift toward the end of the slice, because (i) at
larger values ofR the minimum of electrostatic interaction
moves to the (R, 0, 90, 0) orientation, because the QQ term,
which appeared in eq 8, becomes more and more dominant;
and (ii) at smaller values ofR, despite the fact that the
electrostatic interaction becomes more attractive around inter-
mediate values ofθb, the rapid increase of overlap repulsions
efface all electrostatic components in favor of the (R, 0, 90, 0)
orientation.

3.4. Structural Features of the Fitted PES. According to
the above-mentioned results along theθ-slice, the best com-
promise between accuracy and computational cost was achieved
by the aTZ+b basis set. Consequently, this basis set was utilized
to calculate the interaction energy over the selected grid up to
the fourth-order of MP, and then both the resulting MP2 and

TABLE 2: Basis Set Convergence of HF, MP2, and MP4 Interaction Energies and Their Correlation Contributions at the (7.5,
0, 45, 0) Configurationa

basis set UHF Ucorrelation
(2)

Ucorrelation
(4)

U(2) U(4)

aTZ 386 (-107) -953 (-148) -951 (-186) -567 -565
aQZ 399 (-60) -994 (-92) -1000 (-89) -595 -601
a5Z1 396 (-10) -1013 (-53) -1020 (-42) -616 -624
a6Z2 396 (-2)
aTZ+b 398 (-1113) -1019 (-2194) -1035 (-2422) -621 -636
aQZ+b 396 (-316) -1028 (-901) -1039 (-818) -632 -643
a5Z1+b 396 (-30) -1030 (-407) -1039 (-323) -634 -644
estimated CBS 395 -1030 -1039 -635 -645

a Values in parentheses are cp-corrected BSSEs. All energies are inµEh.

Figure 2. Different components of the electrostatic interaction energy,
and its total value along the (7.5, 0,θb, 0) slice of the PES obtained at
the MP2/a5Z1 level of theory.

Figure 3. Radial dependence of the isotropic part of fitted potentials
and the corresponding minimized (min) and maximized (max) values
over angular coordinates.

Ues(R, θa, θb, æ) ) ∑
La,Lb,L

δLa+Lb,L

MLa
MLb

BLa,Lb,L
(θa, θb, æ)

RLa+Lb+1
(8)
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the MP4 ab initio points were fitted. The analytical representa-
tion of potential is sufficiently flexible that, despite the large
number of radial grid points used, the overall agreement of the
fit is very good. In the bond region of the potential (U < 0),
discrepancies between the fitted values and the calculated ab
initio points are smaller than 4.5µEh, with a root-mean-square
error of 0.7µEh. At more repulsive energies (U > 300µEh) the
largest relative error is≈4.2%, with an average error of≈0.6%.
Notably, the fitted PES is accurate at the most stable structures.
Its relative error at the well depth of investigated orientations
is, on average, less than≈0.2%, with a maximum error of
≈1.3%.

In Figure 3, the radial dependence of the isotropicV000 part
of the fitted MP2 and MP4 potentials are compared with each
other. Note that in eq 2,A000 ) 1. This figure also contains the
optimized energy curves obtained at each value ofR by
minimization and maximization of potentials over all angular
coordinates. Both the MP2 and the MP4 potentials show the
same double-well structure over the minimized energy curve,
but the former is shallower, especially around the local minimum
located at smallerR. The same thing can be said about the
isotropic part of the potentials. At distances smaller than 6 au,
all minimized and maximized energies correspond to the (90,
90, 90) and (0, 0, 0) orientations, respectively. In agreement
with our previous discussion about the oscillatory behavior of
MP series, comparison of the maximized energy curves shows
that the MP2 potential is less repulsive than the MP4 one at
short range.

Exploration of the fitted surfaces demonstrated that some of
the most important characteristic points on the PES of the F2

dimer are located at theθa ) θb surface. Thus, some further ab
initio calculations were performed to check the reliability of
the fitted potentials over this surface. In Figure 4, the (7.2,θ,
θ, 0) slice of fitted surfaces is compared with ab initio points,
none of which were included in the fit. The PES oscillates along
theθa ) θb surface. This feature remains valid at all intermediate
distances, and as a result, the PES shows two saddle points and
a local minimum withθa ) θb andæ ) 0. To further emphasize
the role of electrostatic forces on the shape of the PES of the
F2 dimer, the corresponding MP2 values of total electrostatic
interactions are plotted in Figure 4. It must be noted that the

individual QQ term has a single minimum along this slice, and
the double-well structure of the curves in Figure 4 originates
from similar structures of QH and HH interactions.

The oscillatory behavior of the PES along theθa ) θb surface
can be seen more obviously in Figure 5. This figure is a cut
through the full MP4 surface foræ ) 0 and forR values that
minimize the interaction energy in each (θa, θb) point. By
extending the range ofθa andθb to 180°, this figure also contains
all planar structures withæ ) 180. To interpret this figure, note
the following relation (eq 9):

The same minimized 2D cross-section of the PES foræ ) 90
is depicted in Figure 6. The characteristic points visible in these
figures are listed in Table 3. The global minimum of the PES
(M1 in Figure 5 and Table 3) is the (6.82, 12.9, 76.0, 180)
configuration with a well depth of 716µEh. Remember that
this configuration is equivalent to (6.82, 104.0, 12.9, 0). Also,
there are two other minima with well depths of 596 and
629µEh. The former (M2 in Figure 5) is a planar structure with
θa ) θb ) 73°, and the latter (M3 in Figure 6) that is located
at shorter distances is a crossed structure withθa ) θb ) æ )
90°. As can be seen in Figure 5, the global minimum M1 and
the local minimum M2 are connected via a saddle point (S2).
Relative to M1, the barrier for this motion is around 180µEh.
Energetically, there is a more favorable motion with a barrier
around 60µEh that passes the T-shaped structure (S4) in
Figure 5. This saddle point connects the global minimum to a
symmetrically equivalent structure on the PES. For local
minimum M2, a similar motion to its symmetrically equivalent
structure has a barrier around 70µEh and is associated with the
parallel structure (S1 in Figure 5).

3.5. Second Virial Coefficient.As a pure two body interac-
tion property, the second virial coefficientB(T) was calculated
to give a first, simple test of the quality of the fitted MP2 and

Figure 4. Angular dependence of fitted potentials and electrostatic
interactions along the (7.2,θ, θ, 0) slice of the PES in comparison
with calculated points that were not included in the fit. Figure 5. A cut through the fitted MP4 potential foræ ) 0 and

R-values that minimize interaction energy for the given angles. See
Table 3 for a description of minima and saddle points. The contours
are separated by 50µEh.

U(R, θa, θb, æ) ) U(R, θa, π - θb, π - æ) ) U(R, π -
θa, θb, π - æ) ) U(R, π - θa, π - θb, æ) (9)
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MP4 potentials. The value ofB(T) for a given temperatureT
was calculated from eq 10:

in which kB andNA are Boltzman’s and Avogadro’s constants,
respectively. We used a multidimensional adaptive quadrature
method with an absolute error estimate of better than
0.05 cm3‚mol-1. The stability of the results was checked against
the variation of the integration parameters. The quantum
correction toB(T) was expected to be small and was ignored.

In Figure 7, calculated second virial coefficients are compared
with experimental data.32,33Available experimental data ofB(T)
are lower than the Boyle temperature, and those of ref 33 seem
to be more accurate. At all temperatures, the MP4 potential
exhibits a more reasonable agreement with experiment than the
MP2 one. Differences between the MP2 and the MP4 values
of B(T) are consistent with the shallowness of the MP2 potential.
At the lowest temperature, the uncertainty of the measurements
reported in ref 33 is 40 cm3‚mol-1, and the MP4 value ofB(T)

is 16.4 cm3‚mol-1 (≈6.8%) lower than the experimental result.
At higher temperatures deviations decreased, but forT >
120 K they are larger than the experimental uncertainty.

4. Conclusions

In the present work, after a detailed analysis of various ab
initio derived interaction energies along an angular slice of the
PES, the aTZ+b basis set was utilized for calculation of the
PES up to the fourth-order of MP perturbation theory. Basis
set convergence of monomer properties were analyzed, and
MP2 values of 0.75, 13.63, and 8.14 au were obtained for
quadrupole, hexadecapole, and the mean polarizability of the
F2 molecule near the CBS limit. Best estimates of the CBS limit
of interaction energy were derived and were used for analysis
of the basis set incompleteness errors at different computational
levels. Basis set incompleteness error of the MP4/aTZ+b
interaction energies was estimated to be, on average, less than
3%. It was found that the MP2 method is unable to reproduce
the anisotropy of the PES accurately, even near the CBS limit.
Especially at short range and close to the (R, 0, 0, 0) orientation,
the relative stability of the configurations obtained with MP2
is completely different from those of MP4. Examination of the
different components of the electrostatic contribution of the
interaction energy demonstrated that the hexadecapole moments
of molecules play an important role in the anisotropy of
electrostatic and total interaction energy of the F2 dimer at
intermediate intermolecular distances.

Both the MP2 and the MP4 interaction energies were
calculated at 1387 points on the PES and were used to construct
analytical potentials with a spherical expansion functional form.
The global minimum of the fitted MP4 PES was found to be
the (6.82, 12.9, 76, 180) configuration with the well depth of
716µEh. Two other minima were found at the (6.04, 73.7, 73.7,
0) and the (5.76, 90, 90, 90) configurations with potential
energies around-596 and-629µEh, respectively. Comparison
of the results obtained for the F2 dimer in the present study
with those of the N2 dimer16 demonstrated that the anisotropy
of the PESs of these systems at short range is similar, but it
becomes completely different at intermediate and large inter-
molecular distances as a result of differences between the
multipole moments of these molecules. Values of the classical
second virial coefficient calculated with fitted MP2 and MP4

Figure 6. Same as Figure 5 foræ ) 90. The contours are separated
by 20 µEh.

TABLE 3: Position of the Minima (M) and Saddle Points
(S) on the Fitted MP4 PES and Their Associated Interaction
Energiesa

minima and
saddle points R θa θb æ U(4) U(2)

M1 6.82 12.9 76.0 180 -716.3 -657.4
M2 6.04 73.7 73.7 0 -596.2 -493.6
M3 5.76 90 90 90 -629.1 -504.4
S1 6.06 90 90 0 -525.4 -431.6
S2 6.41 82.6 52.8 0 -535.1 -452.6
S3 7.61 22.6 22.6 0 -616.4 -609.1
S4 6.78 0 90 0 -658.3 -591.5
S5 6.56 53.3 90 90 -455.1 -372.5
S6 7.67 27.2 27.2 90 -492.5 -486.3

a All distances are in au, angles are in degrees, and energies are in
µEh.

B(T) )
NA

4 ∫0

2π
dæ ∫0

π ∫0

π
sin θa sin θb dθa dθb∫0

∞
r2 dr ×

{1 - exp(-U(R, θa, θb, æ)

kBT )} (10)

Figure 7. Calculated second virial coefficients in comparison with
experimental results. See refs 32 and 33.
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potentials were compared with experimental data. The MP4
potential exhibits a more reasonable agreement with experi-
mental data.
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